Numerical Modeling of Disc Brake System in Frictional Contact

نویسندگان

  • A. Belhocine
  • Abu Bakar
  • M. Bouchetara
  • Ali Belhocine
چکیده

Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyse the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor by holding account certain parameters such as; the material used, the geometric design of the disc and the mode of braking. The analysis also gives us, the heat flux distribution for the two discs. © 2014 Published by Faculty of Engineering Corresponding author: Ali Belhocine Faculty of Mechancal Engineering, USTO Oran University, L.P. 1505 El‐Mnaouer, USTO, 31000 Oran Algeria E‐mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of fully coupled thermomechanical analysis of disc brake rotor

Vehicle braking system is considered as one of the most fundamental safety-critical systems in modern vehicles as its main purpose is to stop or decelerate the vehicle. The frictional heat generated during braking application can cause numerous negative effects on the brake assembly such as brake fade, premature wear, thermal cracks and disc thickness variation (DTV). In the past, surface rough...

متن کامل

Thermomechanical Simulation of Wear and Hot Bands in a Disc Brake by Adopting an Eulerian Approach

Abstract: In this paper frictional heating of a disc brake is simulated while taking wear into account. By performing thermomechanical finite element analysis, it is studied how the wear history will influence the development of hot bands. The frictional heat analysis is based on an Eulerian formulation of the disc, which requires significantly lower computational time as compared to a standard...

متن کامل

An Efficient Sequential Approach for Simulation of Thermal Stresses in Disc Brakes

In this paper an efficient approach to simulate thermal stresses due to frictional heating of disc brakes is presented. In the approach thermal and stress analysis are performed sequentially. The frictional heat analysis is based on the Eulerian method, which requires significantly low computational time as compared to the Lagrangian approach. Complete three-dimensional geometries of a disc and...

متن کامل

Finite Element Modeling of Contact Problems

Contact is the principal way load is transferred to a body. The study of stresses and deformations arising due to contact interaction of solid bodies is thus of paramount importance in many engineering applications. In this work, problems involving contact interactions are investigated using finite element modeling. In the first part, a new augmented Lagrangian multiplier method is implemented ...

متن کامل

DINAME 2013 - Simulation of Dynamic Instabilities Induced by Sliding Contacts

When dealing with complex mechanical systems that include sliding contact, it is necessary to account for the coupling between the dynamic behavior of the system and the local behavior at the contact. A particular consequence of interaction between system dynamics and contact behavior is the occurring of vibrational instabilities of the mechanical system, induced by the frictional contact. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014